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Inertial range and the finite Reynolds number effect of turbulence
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The Kolmogorové law, which is the unique, exact relationship of inertial-range statistics, is applied to
investigate the finite Reynolds number effect, in particular to study how the width of the inertial range of finite
Reynolds number turbulence changes with the Taylor microscale Reynolds nBmbieris found that there
is no inertial range wheR, <2000 and, within tolerance of 1% errd®, should be higher than #on order to
have an inertial range wider than one decade. The so-called inertial range found in experiments and simulations
is just a scaling range and is not the same as Kolmogorov’s inertial range. The finite Reynolds number effect
cannot be neglected within such a scaling range and should be considered in comparing expésiments
simulation$ with theories of the inertial-range statisti¢§1063-651X96)03112-1

PACS numbdps): 47.27.Gs, 47.27.Jv

The concept of inertial range proposed by Kolmogorov D L (r)=—ter, (1)
plays a central role in the statistical physics of turbulence
[1,2]. The idealized model of inertial range corresponds to
the asymptotic case of infinite _Reynolds number, _whlle_f|eIdWhere e is the energy dissipation rate. Figure 1 gives
observations, laboratory experiments, and numerical S|mula;D (r)/er versus logy(kyr) of finite Reynolds number
tions are made for turbulent flows at finite Reynolds num-, - LLL\T)/€ Sl Kd y 5
bers. It is commonly believed that when the Reynolds numlurbulence forR,=200, 500, 1500, 1) and 10. Here
ber is high enough, small-scale statistics within some small&ka=(7€)"" is the Kolmogorov length scale. The method
scale range of finite Reynolds number turbulence can b€f calculatingD  (r) is explained in the next two para-
described by the idealized model of the inertial range. Ingraphs. A log-log plot oD (r) againstr for R,=1500 is
other words, the finite Reynolds number effect approachegiven in Fig. 2, whereD (r) scales as over about two
zero as the Reynolds number becomes higher and higher. @ecades, and this scaling range is commonly taken as the
course, it might be possible that the finite Reynolds numbejnertial range in experiments. However, Fig. 1 shows that
effect persists while the Reynolds number approaches infin-p | (r)/er deviates from the inertial-range value 0.8 over
ity (this possibility is not considered in this papein com- e | (r)~r scaling range shown in Fig. 2. According to
paring experimentgor simulation$ with theories, it is im- Kolmogorov's £ law (1), —Dy,,(r)/er should be equal to

portant to know quantitatively how fast the finite Reynolds . L L
number effect approaches zero as the Reynolds number tyg'-S in the inertial range and the deviation 6D, (r)/er

comes higher and higher. For example, it is interesting t rom 018 implies tha}t the viscous effecF or the Iarge-scale
know whether the Taylor microscale Reynolds numbereffect is not negligible. Therefore, strictly speaking, the

R,=800 (or 1500 is high enough for the existence of a D,_'L,_(r)~r scaling ranges ob;ervgd in experiments or simu-
small-scale range within which the idealized inertial-range/ations are not Kolmogorov's inertial range. In other words,
model is valid and the finite Reynolds number effect is neg-
ligible. Some say “yes” and some say “no.”
A popular method to determine the inertial range of finite
Reynolds number turbulence in experiments and simulations
is to make a log-log plot of the one-dimensioiabD) longi-
4
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effect cannot be neglected within the scaling range observed k
in experiments and simulations, and the scaling range is not o ; ‘,'2 3 "‘ é é
the same as Kolmogorov's inertial range. In this paper, the
third-order structure functio®, (r) is used to determine Log,o(kdr)
the inertial range and to study the difference between the
inertial range and the scaling range because there is an exactFIG. 1. —D (r)/er vs logo(kgr) of finite Reynolds number

tudinal spectra against the wave numieto find a k> 0.6
range and then take this °° range as the inertial range, or

inertial-range relationship fob, (r) (the Kolmogorovi  turbulence forR, =200, 500, 1500, 19 and 16. kg is the Kol-
law [1]), mogorov wave number. Ke1.5,n=1, and7(k) is (10a.

08

.
to take ther?® range in a log-log plot of the second-order \_3
structure functiorD | (r) against the distance as the iner- = 0.4F
tial range. For example, in their famous tidal experiments
(R,~2000, Grant, Stewart, and Moilligt3] observed & >3 !
range of nearly three decades. More examples are shown in 0.2F
Fig. 9 of [4]. In fact, the viscous effect and the large-scale
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4 T T T | q(k)=E(k)/4mk?. (50
HereE(K) is the 3D energy spectrum,

b(k,p,r)=(p/k)(xy+2%) (5d)

is a geometrical factor, and, y, andz are the cosines of
or _.-" three angles of the triangle with sidkesp, andr. The key of
& 4 the closure probler6] is how to determiney(k), which has
3 different meanings in different closure methods. For ex-
B ample, (k) represents the response function in Kraichnan’s
1 1 ] direct interaction approximatiofDIA) closure[5,6], while
0 1 2 3 4 9 [8] treats7(k) as the optimal control parameter to minimize
Log (kd r the error of the approximate solution of the Liouville equa-
10 tion of turbulence. It is easy to prove that thék) given by
(5) satisfies(4). Therefore, ifE(k) and (k) are known, we
can use(5) to evaluateT (k) and then us€2) or (3) to cal-
culateD | (r). In the universal equilibrium rang&(k) and

within the scaling ranges found in experiments or simula- : N
tions, the finite Reynolds number effect is not negligible and”(k) have to Sf”‘t'Sfy the spectral form of the vonrien-—
Howarth equation for stationary turbulence

has to be considered.
Before studying the finite Reynolds number effect in de- T(K)=2k2E(K). (69)

tail, we explain how to calculate the third-order structure

function D, (r) of finite Reynolds number turbulence |n the inertial range, the viscous effect is negligitie)

[readers not interested in the method of calculaing, (r)  pecome[1]

can skip the following two paragraph®y a similar process

Logyg{-DriLke/e)

FIG. 2. Logd —D(r)kg/€] vs logo(kyr) for R,=1500.

of deriving Eq.(12.141 of [1], we obtain T(k)=0, (6b)
—DLLL(r):12J’:T(x/r)[xzsin(x)+3x cogx) and
— 3 sin(x)]/x%dx, 2) H(k)=f:T(k')dk’=E (60

where T(k) with k=x/r is the energy transfer Spectium pgrey js in the inertial range ant(K) is the energy transfer
function. From(2) we have function.

In this paragraph, we explain how to determibgk) and
r2i+) - (3g) [%(]k) appearing iriT (k) of (5). In the inertial range, we have

Cs=2, Cs=-C4/36, C,=—Cg66, (3b) E(k)=Koe?*% 3, (79

D=3, cmlfo T(ok2)dk

etc. For smallr, D, (r) can be calculated by using only 7(k)=D e, (7b)
first three terms of the seri€3a). For largerr, the serie$3a)

might not be convergent; the integr@) has to be used to where Ko is the Kolmogorov constant, and () and (6¢)
calculate D (r). While using (2) and (3) to calculate we obtain

D ..(r), T(K) has to satisfy the energy relationship
L Ko%/D=5.25, (79

fo T(k)dk=0. (4 which does not depend upon which closure method is used.
Diszerent closure methodg5—8] predict different values of
Therefore, the problem of calculatifyy, , (r) becomes how DKo and hence predict different K@nd D). In order to
to determine the energy transfer spectrum funcficgk). ~ avoid the issue of which closure method is better, we con-
Various statistical closure methods of the Navier-Stokes$ider the Kolmogorov constant Ko as an adjustable param-

equation[5—8] yield the following expression fof (k): eter andD as determined by(7c), and then study how
D, .(r) depends upon Ko. As shown later, our conclusions
0 a [ k+r do not depend upon which of the closure methods is used. In
T(k)=16mk jo dr rfma)(kr r)dp p Gk,p,r)/[n(k) the universal equilibrium range, we have
+5(p)+ 7(r)], (59 E(k)=Koe?*k 5PF(k/ky), F(0)=1. (89
G(k,p,r)=b(k,p,nq(r)[q(p)—a(k)]+b(k,r,p)a(p) According to Kolmogorov/F(x) is a universal function of

x=k/ky; (88 becomeq7d) in the inertial rangeF(x) de-
X[q(r)y—aq(k)], (5b) creases exponentially in the dissipation range. Hence, in
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solving (6a) with (5) by the equation-error methd®], the
following trial form of F(x) is used:

F(x)=(1+Bx*g)exp—Cx¥), (8b)

g=[1+C,Z+CyZ?+---+C,Z™? Z=x". (80
The parameteB, «, C, B, C4, Cy,...,C,,, andy are ad-

justed to make the equation error(68) as small as possible.

These adjustable parameter have to satisfy the following

constraint during the optimization computation:

]

EZZVJ
0

E(k)k2dk
or

2Ko f x¥3F (x)dx=1. 9)
0
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FIG. 3. kT(k)/e (OOOO) and 2vk3E(k)/e (—) vs logio(k/kq)
for the optimal solution of6a). Upper curve: Ke=1.2 andn(k) is

When taking viscous effects into account, a reasonable forrit0b). Lower curve: Ke=1.5 andzp(k) is (10a.

of 7(k) is [8,9]
n(k)=D e+ vk?= "2 D + (kiky)*?], (108

which becomeg7b) in the inertial range. An improved form

of n(k) is [9]

(k)= e¥*k?I D+ D (kikqy) 3+ (k/kg)*®]  (10b

R,=215 Kof dx FOOXY[X" 53+ (ko /kg)" 53],
0
(12

So long as Ko,n, and R, are given, we can us€l?) to
determineky/ky and then usél1l), (5), and some form of
n(k) to evaluateT (k). By using(2) and(3), we further cal-

and D, is also treated as adjustable parameter. All threeulate D, (r). Finally, we obtain Figs. 1-10. A detailed

forms of 5(k), i.e.,(7b), (108, and(10b), are tried in solving
(68 numerically to determiné&(x). Similar forms ofF(x)
are obtained; in particular, we obtad™>0, implying the ex-

account of the numerical procedure will be reported else-
where.
The finite Reynolds number effect mainly refers to the

istence of a bump between the inertial range and the dissipaituation that within the scaling range found in experiments

tion range. It will be shown later that our conclusions do not
depend upon which form of)(k) is used. Thirty sampling
points over the range 18<k/k,<1 are used in solving6a)

by the equation-error methotbnly two sampling points
were used in9]). The more terms i68¢c) used, the better the
optimal solution. Whemm=5 in (8¢), the equation error of
(6a) for the optimal solution is less than 0.002, which is good
enough. As an illustration, Fig. 3 shows two optimal solu-
tions of (6a) that satisfy(6a) very well and Fig. 4 shows the
case ofF(x) being Pao’s formula, which does not satisfy
(6a). In the energy-containing rangea) is no longer valid;
moreover,E(k) is not universal. Within the framework of
isotropic turbulence, the following model is commonly
adopted[10] to extrapolate(8a) to the energy-containing
range:

E(k)=Koe?*k 5B3F (kikg)/[1+ (ko /K)" 53], (11)

Here k, is the characteristic wave number of the energy-
containing range and represents how fa&(k) decreases to
zero ask—0 (n=1 is used in10]). The wave-number ratio
ko/Kq is related to the Reynolds numbiy . By definition,

Ry =(u?)Y2\/v, N=[(u?)/{(aulax)?)]*?,

u is the turbulent velocity component along thedirection,

and simulations some small-scale statistics deviate from the
prediction of idealized inertial-range models of infinite Rey-
nolds number. A concrete measure of the finite Reynolds
number effect depends upon which small-scale property is
studied. We choose the third-order structure function
D, .(r) to study the finite Reynolds number effect because
there is an exact relationshift) for D, (r) in the inertial
range. One may use the deviation of the local scaling expo-
nentd log,o[ D (r)]/d log;o(r) from the theoretical value

1 to measure the finite Reynolds number effect. Figures 1
and 2 indicate that the local scaling exponent being unity

.6

Log, o (k/kg)

and () denotes the statistical average. For isotropic turbu-

lence (u?)=2[ E(k)dk ande=151((du/ 9x)?. By (1), af-
ter some manipulation we have

FIG. 4. kT(k)/e (OOOO) and 2k3E(k)/e (—) vs logyo(k/Kg)

for Pao’s formulaF (x) =exd —1.5 Ko x*], Ko=1.7.
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5 6
Log, o (Ra) Log, g (Ra)
FIG. 5. Maximum valueVy,, of =Dy (r)/er vs logio(R,) for FIG. 7. Vpy, vs logio(R,) for differentn. Ko=1.5 and(k) is
three typical values of Ko. n=1 and 5(k) is (103. (109.

does not imply the validity of the inertial-range relationship range spectrum give nearly the same relationship between
(1). Therefore, it is better to measure the finite ReynoldsV,, and logyR,). Figure 8 gives the inertial-range widW
number effect by the equation error @, i.e., by the devia- against logyR,) for three typical values of Ko, while
tion of =D (r)/er from the inertial-range value 0.8. In £=1%. Figure 9 givesW vs logy(R,) for three different
particular, if the maximum value of D (r)/er is smaller values of€. From Figs. 1 and 5-9, it is evident that there is
than 0.8, then we conclude that there is no inertial rang@o inertial range wherR, <2000 andR, should be higher
where the finite Reynolds number effect is negligible. Thethan 1d in order to have an inertial range wider than one

width of the inertial range is decade within which the finite Reynolds number effect is
smaller than 1%. One important aspect of the finite Reynolds
W=1091o(r max/ T min) - (13)  number effect is how far the anisotropy of the macrostructure

Here (r i 1) is the range over which the deviation of penetrates into the small-scale range of finite Rey_nolds num-
b (”r")”/’ep“afrom 08 is less than the errdf. In other _ber turbulence. Unfo_rtunate_ly, this cannot be considered here
worch%sL the finite Reyﬁolds number effect shoul.d be less thall”nn the frla_mework_ O.f |sotr_op|c turbulence. . .

’ Traditionally, it is believed that one decade of inertial

‘gif\f'\gﬁgﬂ 5Z?ugnseg§|a:2n3:é dlr;noduz:gr%maerré((:jalL\zorr;p:;tgttéon, range can be observed in experiments and simulations at
P - et R,=200 and more than two decadesRyt=1500. Actually,

gi'\?erga};("g%m g’ e;i)uretr?:_e[e) Lt;%ig);|635mrggegfl:selOI%&(I’E)(\))Q;SI’OV the inertial range observed in experiments and simulations is
. ; -5/3 ; ; _
constant Ko, which show how the finite Reynolds numberan approximatek scaling range in a log-log plot of 1D

. . ) longitudinal energy spectru;(k) against the wave num-
effect changes with the Reynolds number. Figure 6 gigs ; . —5/3 : ;
vs logo(R,), while different forms ofy(k) are used. Figure 7 berk. This approximate > scaling range is not the same

ivesV. vs log,(R,) for different val f the characteri as Kolmogorov’'s inertial range within which both the vis-
gIVES Vi VS 10G1o()) 10 erent vajues otthe characteris- ., s effect and the large-scale effect are negligible. From the
tic parameten in the spectrun{11). Figures 6 and 7 clearly

show that different forms ofp(k) and energy-containing- viewpoint of spectral dynamicgl,6,8), the inertial range is

6 T T T

Ym T T v bt
0.8 . WE  oee Ko=12

4k Ko=15 a
coo Ko=1.8

0.7 L i

2 . -

06 _ 4

0 0_ 1 i 1
2 3 4 S5 6 3 4 S 6 7
FIG. 6. V|, vs logo(R,) for different forms of (k). Ko=1.5 FIG. 8. Inertial-range widthV vs logo(R,) for three typical

andn=1. values of Ko. £=1%, n=1, and7(k) is (109.
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6 T T T - According to Kolmogoroy 1], in the inertial range

Wl oo0o0o £=05%
E=1%
= e E=2%

b E1(K)/(er®)Y4=LKo(k/ky) 53,

B It has been showfil1] that C, is greater thark Ko due to
the bump phenomengan relatedTt¢k) not being zero and the
- Kolmogorov constank = 22C, derived from thek > range
observed in experiments and simulations is a pseudo one and
= is greater than the real Kolmogorov constant Ko. Therefore,
over thek°° scaling ranggwhich is commonly called the
. inertial range in experiments and simulatipreg R, =200,
500, and 1500, the finite Reynolds number effect has to be
0 93 | 1 considered and is in agreement with the conclusion derived
2 4 ) 6 7 from Figs. 1, 5, and 8 in the preceding paragraph. Another
Logm(RA) interesting example of the finite Reynolds number effect is
that the scaling exponents derived from the scaling rdimge
FIG. 9. W vs log(R,) for different &, Ko=1.5, n=1, and a log-log plot of high—order structure functions agaims;t_
(k) is (108, _obse_rved in experiments dewate.s from the _theoretlca.I
inertial-range values because the viscous effect is not negli-

) gible in the scaling range. Hence Bemtial.[12] suggested
the wave-number range over which the energy transfer funcﬁlotting high-order structure functions agaim3t, ,(r), in-

tion 11(k) is a constant independent lofor the energy trans-  gyo44 of plotting high-order structure functions agamsin
fer spectrum functiorT (k) is zero. A plot ofkT(k)/e versus o qar 1o get a better estimation of the scaling exponents.
log, o(k/kg) for R,=200, 500, and 1500 is given in Fig. 10, 155t experiments and simulations are Bf around
which clearly shows that there is no wave-number range ovefy_j The finding that there is no inertial range while
whichII(k) =const andr (k) =0. Of course, in a log-log plot g <5000 will have important meaning for the interpretation
of E4(k) versusk for R):?BZOO, 500, and 1500, we can ob- 4 ihe 5o-called inertial-range data derived from the scaling
serve an approximatk ~* scaling range, over which we nqe ohserved in experiments and simulations and calls for
have reexamining the comparison of theories and experim@nts
simulations of the inertial-range statistics. In other words, in
E1(K)/(ev®)Y4~Cy(k/ky) >3 the interpretation of these data, the finite Reynolds number
effect must be considered. Here we discuss two interesting
cases: the interpretation of the experimental data of the third-
0.7 order structure functio®,, (r) and the experimental sup-
port for Kolmogorov’s refined similarity hypothesi®&SH).
Saddoughi and Veeravallf] measureD |, (r), suppose that

Kolmogorov's ¢ law (1) is valid over the scaling range
200 caught in their experiments, and then use—3r D, (r)
to obtain the energy dissipation rateTheir experiments are

/\ at R, =600-150(4]; hence there is no inertial range within

which Kolmogorov'sg law (1) is valid according to Figs. 1

|

over the scaling range and is between 0.65 and 0.75 for
R,=600-1500 instead of the inertial-range value 0.8 as
shown in Fig. 1. As a consequence, the estimatior b/

V Saddoughi and Veeravalli using=—2r "D, (r) should
1500 be about 10—20 % lower than the real valuesoThis might
explain why e=—3r "D (r), experimentally determined
by Saddoughi and Veeravalli, is lower than the value esti-
mated from the 1D energy spectra. In the experiments by
Zhu, Antonia, and Hosokawfl3], a D, (r)~r scaling
range of about one decadeRyt=250 and a scaling range of

-0.7 more than two decades B{=7000 are observed, thees-
-5 -4 -3 -2 -1 0 1 timated by 1D energy spectra is used to calculate the con-
stantC3, and aC; smaller than 0.8 is found, consistent with
Log,o(k/kd) our conclusion. In order to assess Kolmogorov's RSH, re-
cently many authorg¢see[13] and references thergitave
FIG. 10. kT(K)/e vs logk/ky) for R,=200, 500, 1500. Ko mMmeasured the correlation coefficients betwaen (or |Au,|)
=1.5,n=1, and5(K) is (10a. and ¢ [or (re)Y®] of highR, turbulence. Here

and 5. Over the scaling range found in their experiments at
Y R,=600-1500,D,  (r)=—Cgjer is approximately valid;
200 here the constar@; is some average value ofD, (r)/er

kKT(k)/€
__ 2/

|
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Au,=u(x+r)—u(x) is the velocity difference across a dis- tions for such disagreement between experimental values and
tancer ande, is the local average dissipation over the scaletheoretical inertial-range values. One possible interpretations
r. A theoretical analysi$14] shows that the experimental is that the disagreement between experimental and theoreti-
data of correlation coefficients are not in agreement with thecal values may related to the finite Reynolds number effect
inertial-range values predicated by Kolmogorov’'s 1962upon the correlation coefficients, which is not known well at

(K62) theory. For example, the correlation coefficients present. Since all experimental measurements of correlation
2, 212 coefficients are made &, less than 1f) according to Figs.
p3={(Au,—(Au)) (€ — (€)M ((AU7)(er)) ™ 1 and 5-10, the finite Reynolds number effect has to be

considered within the scaling range observed in experiments.
pa={(X—=(XNY=(YDWX=(XNZHKY—=(Y))P)Y2, Only when a detailed understanding of the finite Reynolds
number effect has been achieved can we resolve the question
X=Au,, Y=(re)*® of to what extent the experiments and simulations support or
deny the RSH of K62 theory. At present we are far from
should be zero in the inertial range according to K62 theoryunderstanding the finite Reynolds number effect. This paper
however, their experimental values in the scaling range obrepresents a preliminary effort to understand the finite Rey-
served in experimentgalled “inertial range” in literatur¢  nolds number effect in the case of the third-order structure
are regularly positivg13,15. There are different interpreta- functionD(r).
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