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Inertial range and the finite Reynolds number effect of turbulence

J. Qian
Department of Physics, Graduate School of Academia Sinica, P.O. Box 3908, Beijing 100039, China

~Received 31 May 1996!

The Kolmogorov 4
5 law, which is the unique, exact relationship of inertial-range statistics, is applied to

investigate the finite Reynolds number effect, in particular to study how the width of the inertial range of finite
Reynolds number turbulence changes with the Taylor microscale Reynolds numberRl . It is found that there
is no inertial range whenRl<2000 and, within tolerance of 1% error,Rl should be higher than 10

4 in order to
have an inertial range wider than one decade. The so-called inertial range found in experiments and simulations
is just a scaling range and is not the same as Kolmogorov’s inertial range. The finite Reynolds number effect
cannot be neglected within such a scaling range and should be considered in comparing experiments~or
simulations! with theories of the inertial-range statistics.@S1063-651X~96!03112-1#

PACS number~s!: 47.27.Gs, 47.27.Jv
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The concept of inertial range proposed by Kolmogor
plays a central role in the statistical physics of turbulen
@1,2#. The idealized model of inertial range corresponds
the asymptotic case of infinite Reynolds number, while fi
observations, laboratory experiments, and numerical sim
tions are made for turbulent flows at finite Reynolds nu
bers. It is commonly believed that when the Reynolds nu
ber is high enough, small-scale statistics within some sm
scale range of finite Reynolds number turbulence can
described by the idealized model of the inertial range.
other words, the finite Reynolds number effect approac
zero as the Reynolds number becomes higher and highe
course, it might be possible that the finite Reynolds num
effect persists while the Reynolds number approaches in
ity ~this possibility is not considered in this paper!. In com-
paring experiments~or simulations! with theories, it is im-
portant to know quantitatively how fast the finite Reynol
number effect approaches zero as the Reynolds numbe
comes higher and higher. For example, it is interesting
know whether the Taylor microscale Reynolds numb
Rl5800 ~or 1500! is high enough for the existence of
small-scale range within which the idealized inertial-ran
model is valid and the finite Reynolds number effect is n
ligible. Some say ‘‘yes’’ and some say ‘‘no.’’

A popular method to determine the inertial range of fin
Reynolds number turbulence in experiments and simulat
is to make a log-log plot of the one-dimensional~1D! longi-
tudinal spectra against the wave numberk to find a k25/3

range and then take thisk25/3 range as the inertial range, o
to take ther 2/3 range in a log-log plot of the second-ord
structure functionDLL(r ) against the distancer as the iner-
tial range. For example, in their famous tidal experime
~Rl'2000!, Grant, Stewart, and Moilliet@3# observed ak25/3

range of nearly three decades. More examples are show
Fig. 9 of @4#. In fact, the viscous effect and the large-sca
effect cannot be neglected within the scaling range obse
in experiments and simulations, and the scaling range is
the same as Kolmogorov’s inertial range. In this paper,
third-order structure functionDLLL(r ) is used to determine
the inertial range and to study the difference between
inertial range and the scaling range because there is an e
inertial-range relationship forDLLL(r ) ~the Kolmogorov 4

5

law @1#!,
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DLLL~r !52 4
5 er , ~1!

where e is the energy dissipation rate. Figure 1 giv
2DLLL(r )/er versus log10(kdr ) of finite Reynolds number
turbulence forRl5200, 500, 1500, 104, and 105. Here
1/kd5~n3/e!1/4 is the Kolmogorov length scale. The metho
of calculatingDLLL(r ) is explained in the next two para
graphs. A log-log plot ofDLLL(r ) againstr for Rl51500 is
given in Fig. 2, whereDLLL(r ) scales asr over about two
decades, and this scaling range is commonly taken as
inertial range in experiments. However, Fig. 1 shows t
2DLLL(r )/er deviates from the inertial-range value 0.8 ov
theDLLL(r );r scaling range shown in Fig. 2. According t
Kolmogorov’s 4

5 law ~1!, 2DLLL(r )/er should be equal to
0.8 in the inertial range and the deviation of2DLLL(r )/er
from 0.8 implies that the viscous effect or the large-sc
effect is not negligible. Therefore, strictly speaking, t
DLLL(r );r scaling ranges observed in experiments or sim
lations are not Kolmogorov’s inertial range. In other word

FIG. 1. 2DLLL(r )/er vs log10(kdr ) of finite Reynolds number
turbulence forRl5200, 500, 1500, 104, and 105. kd is the Kol-
mogorov wave number. Ko51.5,n51, andh(k) is ~10a!.
337 © 1997 The American Physical Society
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338 55J. QIAN
within the scaling ranges found in experiments or simu
tions, the finite Reynolds number effect is not negligible a
has to be considered.

Before studying the finite Reynolds number effect in d
tail, we explain how to calculate the third-order structu
function DLLL(r ) of finite Reynolds number turbulenc
@readers not interested in the method of calculatingDLLL(r )
can skip the following two paragraphs#. By a similar process
of deriving Eq.~12.141! of @1#, we obtain

2DLLL~r !512E
0

`

T~x/r !@x2sin~x!13x cos~x!

23 sin~x!#/x5dx, ~2!

where T(k) with k5x/r is the energy transfer spectru
function. From~2! we have

2DLLL~r !5(
i51

` FC2i11E
0

`

T~k!k~2i !dkG r ~2i11!, ~3a!

C35
2
35 , C552C3/36, C752C5/66, ~3b!

etc. For smallr , DLLL(r ) can be calculated by using onl
first three terms of the series~3a!. For largerr , the series~3a!
might not be convergent; the integral~2! has to be used to
calculateDLLL(r ). While using ~2! and ~3! to calculate
DLLL(r ), T(k) has to satisfy the energy relationship

E
0

`

T~k!dk50. ~4!

Therefore, the problem of calculatingDLLL(r ) becomes how
to determine the energy transfer spectrum functionT(k).
Various statistical closure methods of the Navier-Sto
equation@5–8# yield the following expression forT(k):

T~k!516p2k3E
0

`

dr r E
max~k2r ,r !

k1r

dp p G~k,p,r !/@h~k!

1h~p!1h~r !#, ~5a!

G~k,p,r !5b~k,p,r !q~r !@q~p!2q~k!#1b~k,r ,p!q~p!

3@q~r !2q~k!#, ~5b!

FIG. 2. Log10@2DLLL(r )kd/e# vs log10(kdr ) for Rl51500.
-
d

-

s

q~k!5E~k!/4pk2. ~5c!

HereE(k) is the 3D energy spectrum,

b~k,p,r !5~p/k!~xy1z3! ~5d!

is a geometrical factor, andx, y, and z are the cosines o
three angles of the triangle with sidesk, p, andr . The key of
the closure problem@6# is how to determineh(k), which has
different meanings in different closure methods. For e
ample,h(k) represents the response function in Kraichna
direct interaction approximation~DIA ! closure@5,6#, while
@8# treatsh(k) as the optimal control parameter to minimiz
the error of the approximate solution of the Liouville equ
tion of turbulence. It is easy to prove that theT(k) given by
~5! satisfies~4!. Therefore, ifE(k) andh(k) are known, we
can use~5! to evaluateT(k) and then use~2! or ~3! to cal-
culateDLLL(r ). In the universal equilibrium range,E(k) and
h(k) have to satisfy the spectral form of the von Ka´rmán–
Howarth equation for stationary turbulence

T~k!52nk2E~k!. ~6a!

In the inertial range, the viscous effect is negligible~6a!
become@1#

T~k!50, ~6b!

and

P~k!5E
k

`

T~k8!dk85e ~6c!

Herek is in the inertial range andP(k) is the energy transfe
function.

In this paragraph, we explain how to determineE(k) and
h(k) appearing inT(k) of ~5!. In the inertial range, we have
@8#

E~k!5Koe2/3k25/3, ~7a!

h~k!5De1/3k2/3, ~7b!

where Ko is the Kolmogorov constant, and by~5! and ~6c!
we obtain

Ko2/D55.25, ~7c!

which does not depend upon which closure method is us
Different closure methods@5–8# predict different values of
D2/Ko and hence predict different Ko~andD!. In order to
avoid the issue of which closure method is better, we c
sider the Kolmogorov constant Ko as an adjustable par
eter andD as determined by~7c!, and then study how
DLLL(r ) depends upon Ko. As shown later, our conclusio
do not depend upon which of the closure methods is used
the universal equilibrium range, we have

E~k!5Koe2/3k25/3F~k/kd!, F~0!51. ~8a!

According to Kolmogorov,F(x) is a universal function of
x5k/kd ; ~8a! becomes~7a! in the inertial range.F(x) de-
creases exponentially in the dissipation range. Hence
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55 339INERTIAL RANGE AND THE FINITE REYNOLDS . . .
solving ~6a! with ~5! by the equation-error method@9#, the
following trial form of F(x) is used:

F~x!5~11Bxag!exp~2Cxb!, ~8b!

g5@11C1Z1C2Z
21•••1CmZ

m#2, Z5xg. ~8c!

The parameterB, a, C, b, C1, C2, . . . , Cm , andg are ad-
justed to make the equation error of~6a! as small as possible
These adjustable parameter have to satisfy the follow
constraint during the optimization computation:

e52nE
0

`

E~k!k2dk

or

2KoE
0

`

x1/3F~x!dx51. ~9!

When taking viscous effects into account, a reasonable f
of h(k) is @8,9#

h~k!5De1/3k2/31nk25e1/3k2/3@D1~k/kd!
4/3#, ~10a!

which becomes~7b! in the inertial range. An improved form
of h(k) is @9#

h~k!5e1/3k2/3@D1D1~k/kd!
2/31~k/kd!

4/3# ~10b!

and D1 is also treated as adjustable parameter. All th
forms ofh(k), i.e.,~7b!, ~10a!, and~10b!, are tried in solving
~6a! numerically to determineF(x). Similar forms ofF(x)
are obtained; in particular, we obtainB.0, implying the ex-
istence of a bump between the inertial range and the diss
tion range. It will be shown later that our conclusions do n
depend upon which form ofh(k) is used. Thirty sampling
points over the range 1023,k/kd,1 are used in solving~6a!
by the equation-error method~only two sampling points
were used in@9#!. The more terms in~8c! used, the better the
optimal solution. Whenm55 in ~8c!, the equation error of
~6a! for the optimal solution is less than 0.002, which is go
enough. As an illustration, Fig. 3 shows two optimal so
tions of ~6a! that satisfy~6a! very well and Fig. 4 shows the
case ofF(x) being Pao’s formula, which does not satis
~6a!. In the energy-containing range,~6a! is no longer valid;
moreover,E(k) is not universal. Within the framework o
isotropic turbulence, the following model is common
adopted@10# to extrapolate~8a! to the energy-containing
range:

E~k!5Koe2/3k25/3F~k/kd!/@11~k0 /k!n15/3#. ~11!

Here k0 is the characteristic wave number of the energ
containing range andn represents how fastE(k) decreases to
zero ask→0 ~n51 is used in@10#!. The wave-number ratio
k0/kd is related to the Reynolds numberRl . By definition,

Rl5^u2&1/2l/n, l5@^u2&/^~]u/]x!2&#1/2,

u is the turbulent velocity component along thex direction,
and ^ & denotes the statistical average. For isotropic tur
lence,̂ u2&5 2

3 * 0
`E(k)dk ande515n^(]u/]x)2&. By ~11!, af-

ter some manipulation we have
g

m

e

a-
t

-

-

-

Rl5 2
3A15 KoE

0

`

dx F~x!xn/@xn15/31~k0 /kd!
n15/3#.

~12!

So long as Ko,n, andRl are given, we can use~12! to
determinek0/kd and then use~11!, ~5!, and some form of
h(k) to evaluateT(k). By using~2! and~3!, we further cal-
culateDLLL(r ). Finally, we obtain Figs. 1–10. A detaile
account of the numerical procedure will be reported el
where.

The finite Reynolds number effect mainly refers to t
situation that within the scaling range found in experime
and simulations some small-scale statistics deviate from
prediction of idealized inertial-range models of infinite Re
nolds number. A concrete measure of the finite Reyno
number effect depends upon which small-scale propert
studied. We choose the third-order structure funct
DLLL(r ) to study the finite Reynolds number effect becau
there is an exact relationship~1! for DLLL(r ) in the inertial
range. One may use the deviation of the local scaling ex
nentd log10[DLLL(r )]/d log10(r ) from the theoretical value
1 to measure the finite Reynolds number effect. Figure
and 2 indicate that the local scaling exponent being un

FIG. 3. kT(k)/e ~ssss! and 2nk3E(k)/e ~—! vs log10(k/kd)
for the optimal solution of~6a!. Upper curve: Ko51.2 andh(k) is
~10b!. Lower curve: Ko51.5 andh(k) is ~10a!.

FIG. 4. kT(k)/e ~ssss! and 2nk3E(k)/e ~—! vs log10(k/kd)
for Pao’s formulaF(x)5exp@21.5 Ko x4/3#, Ko51.7.
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340 55J. QIAN
does not imply the validity of the inertial-range relationsh
~1!. Therefore, it is better to measure the finite Reyno
number effect by the equation error of~1!, i.e., by the devia-
tion of 2DLLL(r )/er from the inertial-range value 0.8. I
particular, if the maximum value of2DLLL(r )/er is smaller
than 0.8, then we conclude that there is no inertial ra
where the finite Reynolds number effect is negligible. T
width of the inertial range is

W5 log10~rmax/rmin!. ~13!

Here ~rmin ,rmax! is the range over which the deviation o
2DLLL(r )/er from 0.8 is less than the errorE. In other
words, the finite Reynolds number effect should be less t
E within the inertial range. In our numerical computatio
different values ofE are used and compared. LetVm denote
the maximum value of2DLLL(r )/er . Vm versus log10~Rl! is
given in Fig. 5 for three typical values of the Kolmogoro
constant Ko, which show how the finite Reynolds numb
effect changes with the Reynolds number. Figure 6 givesVm
vs log10~Rl!, while different forms ofh(k) are used. Figure 7
givesVm vs log10~Rl! for different values of the characteris
tic parametern in the spectrum~11!. Figures 6 and 7 clearly
show that different forms ofh(k) and energy-containing

FIG. 5. Maximum valueVm of 2DLLL(r )/er vs log10~Rl! for
three typical values of Ko. n51 andh(k) is ~10a!.

FIG. 6. Vm vs log10~Rl! for different forms ofh(k). Ko51.5
andn51.
s

e
e

n

r

range spectrum give nearly the same relationship betw
Vm and log10~Rl!. Figure 8 gives the inertial-range widthW
against log10~Rl! for three typical values of Ko, while
E51%. Figure 9 givesW vs log10~Rl! for three different
values ofE. From Figs. 1 and 5–9, it is evident that there
no inertial range whenRl<2000 andRl should be higher
than 104 in order to have an inertial range wider than o
decade within which the finite Reynolds number effect
smaller than 1%. One important aspect of the finite Reyno
number effect is how far the anisotropy of the macrostruct
penetrates into the small-scale range of finite Reynolds n
ber turbulence. Unfortunately, this cannot be considered h
in the framework of isotropic turbulence.

Traditionally, it is believed that one decade of inerti
range can be observed in experiments and simulation
Rl5200 and more than two decades atRl51500. Actually,
the inertial range observed in experiments and simulation
an approximatek25/3 scaling range in a log-log plot of 1D
longitudinal energy spectrumE1(k) against the wave num
ber k. This approximatek25/3 scaling range is not the sam
as Kolmogorov’s inertial range within which both the vi
cous effect and the large-scale effect are negligible. From
viewpoint of spectral dynamics@1,6,8#, the inertial range is

FIG. 7. Vm vs log10~Rl! for different n. Ko51.5 andh(k) is
~10a!.

FIG. 8. Inertial-range widthW vs log10~Rl! for three typical
values of Ko. E51%, n51, andh(k) is ~10a!.
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55 341INERTIAL RANGE AND THE FINITE REYNOLDS . . .
the wave-number range over which the energy transfer fu
tion P(k) is a constant independent ofk or the energy trans
fer spectrum functionT(k) is zero. A plot ofkT(k)/e versus
log10(k/kd) for Rl5200, 500, and 1500 is given in Fig. 10
which clearly shows that there is no wave-number range o
whichP(k)5const andT(k)50. Of course, in a log-log plo
of E1(k) versusk for Rl5200, 500, and 1500, we can ob
serve an approximatek25/3 scaling range, over which we
have

E1~k!/~en5!1/4'C1~k/kd!
25/3.

FIG. 9. W vs log10~Rl! for different E. Ko51.5, n51, and
h(k) is ~10a!.

FIG. 10. kT(k)/e vs log10(k/kd) for Rl5200, 500, 1500. Ko
51.5,n51, andh(k) is ~10a!.
c-

er

According to Kolmogorov@1#, in the inertial range

E1~k!/~en5!1/45 18
55Ko~k/kd!

25/3.

It has been shown@11# thatC1 is greater than
18
55 Ko due to

the bump phenomenon related toT(k) not being zero and the
Kolmogorov constantK̃5 55

18C1 derived from thek25/3 range
observed in experiments and simulations is a pseudo one
is greater than the real Kolmogorov constant Ko. Therefo
over thek25/3 scaling range~which is commonly called the
inertial range in experiments and simulations! of Rl5200,
500, and 1500, the finite Reynolds number effect has to
considered and is in agreement with the conclusion deri
from Figs. 1, 5, and 8 in the preceding paragraph. Anot
interesting example of the finite Reynolds number effec
that the scaling exponents derived from the scaling range~in
a log-log plot of high-order structure functions againstr !
observed in experiments deviates from the theoret
inertial-range values because the viscous effect is not ne
gible in the scaling range. Hence Benziet al. @12# suggested
plotting high-order structure functions againstDLLL(r ), in-
stead of plotting high-order structure functions againstr , in
order to get a better estimation of the scaling exponents

Most experiments and simulations are atRl around
102–103. The finding that there is no inertial range whi
Rl<2000 will have important meaning for the interpretatio
of the so-called inertial-range data derived from the scal
range observed in experiments and simulations and calls
reexamining the comparison of theories and experiments~or
simulations! of the inertial-range statistics. In other words,
the interpretation of these data, the finite Reynolds num
effect must be considered. Here we discuss two interes
cases: the interpretation of the experimental data of the th
order structure functionDLLL(r ) and the experimental sup
port for Kolmogorov’s refined similarity hypothesis~RSH!.
Saddoughi and Veeravalli@4# measureDLLL(r ), suppose that
Kolmogorov’s 4

5 law ~1! is valid over the scaling range
caught in their experiments, and then usee525

4r
21DLLL(r )

to obtain the energy dissipation ratee. Their experiments are
atRl5600–1500@4#; hence there is no inertial range withi
which Kolmogorov’s4

5 law ~1! is valid according to Figs. 1
and 5. Over the scaling range found in their experiments
Rl5600–1500,DLLL(r )52C3er is approximately valid;
here the constantC3 is some average value of2DLLL(r )/er
over the scaling range and is between 0.65 and 0.75
Rl5600–1500 instead of the inertial-range value 0.8
shown in Fig. 1. As a consequence, the estimation ofe by
Saddoughi and Veeravalli usinge525

4r
21DLLL(r ) should

be about 10–20 % lower than the real value ofe. This might
explain why e525

4r
21DLLL(r ), experimentally determined

by Saddoughi and Veeravalli, is lower than the value e
mated from the 1D energy spectra. In the experiments
Zhu, Antonia, and Hosokawa@13#, a DLLL(r );r scaling
range of about one decade atRl5250 and a scaling range o
more than two decades atRl57000 are observed, thee es-
timated by 1D energy spectra is used to calculate the c
stantC3, and aC3 smaller than 0.8 is found, consistent wi
our conclusion. In order to assess Kolmogorov’s RSH,
cently many authors~see@13# and references therein! have
measured the correlation coefficients betweenDur ~or uDur u!
and er @or (r e r)

1/3# of high-Rl turbulence. Here
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342 55J. QIAN
Dur5u(x1r )2u(x) is the velocity difference across a di
tancer ander is the local average dissipation over the sc
r . A theoretical analysis@14# shows that the experimenta
data of correlation coefficients are not in agreement with
inertial-range values predicated by Kolmogorov’s 19
~K62! theory. For example, the correlation coefficients

r35Š~Dur2^Dur&!~e r2^e r&!‹/~^Dur
2&^e r

2&!1/2,

r45Š~X2^X&!~Y2^Y&!‹/@Š~X2^X&!2‹Š~Y2^Y&!2‹#1/2,

X5Dur , Y5~r e r !
1/3

should be zero in the inertial range according to K62 theo
however, their experimental values in the scaling range
served in experiments~called ‘‘inertial range’’ in literature!
are regularly positive@13,15#. There are different interpreta
,

P

e

e

;
b-

tions for such disagreement between experimental values
theoretical inertial-range values. One possible interpretati
is that the disagreement between experimental and theo
cal values may related to the finite Reynolds number eff
upon the correlation coefficients, which is not known well
present. Since all experimental measurements of correla
coefficients are made atRl less than 104, according to Figs.
1 and 5–10, the finite Reynolds number effect has to
considered within the scaling range observed in experime
Only when a detailed understanding of the finite Reyno
number effect has been achieved can we resolve the que
of to what extent the experiments and simulations suppor
deny the RSH of K62 theory. At present we are far fro
understanding the finite Reynolds number effect. This pa
represents a preliminary effort to understand the finite R
nolds number effect in the case of the third-order struct
functionDLLL(r ).
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